Excess open solar magnetic flux from satellite data: 2. A survey of kinematic effects
نویسندگان
چکیده
[1] We investigate the ‘‘flux excess’’ effect, whereby open solar flux estimates from spacecraft increase with increasing heliocentric distance. We analyze the kinematic effect on these open solar flux estimates of large-scale longitudinal structure in the solar wind flow, with particular emphasis on correcting estimates made using data from nearEarth satellites. We show that scatter, but no net bias, is introduced by the kinematic ‘‘bunching effect’’ on sampling and that this is true for both compression and rarefaction regions. The observed flux excesses, as a function of heliocentric distance, are shown to be consistent with open solar flux estimates from solar magnetograms made using the potential field source surface method and are well explained by the kinematic effect of solar wind speed variations on the frozen-in heliospheric field. Applying this kinematic correction to the Omni-2 interplanetary data set shows that the open solar flux at solar minimum fell from an annual mean of 3.82 10 Wb in 1987 to close to half that value (1.98 10 Wb) in 2007, making the fall in the minimum value over the last two solar cycles considerably faster than the rise inferred from geomagnetic activity observations over four solar cycles in the first half of the 20th century.
منابع مشابه
Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass
[1] We use the third perihelion pass by the Ulysses spacecraft to illustrate and investigate the ‘‘flux excess’’ effect, whereby open solar flux estimates from spacecraft increase with increasing heliocentric distance. We analyze the potential effects of small-scale structure in the heliospheric field (giving fluctuations in the radial component on timescales smaller than 1 h) and kinematic tim...
متن کاملHow magnetic helicity ejection helps large scale dynamos
There is mounting evidence that the ejection of magnetic helicity from the solar surface is important for the solar dynamo. Observations suggest that in the northern hemisphere the magnetic helicity flux is negative. We propose that this magnetic helicity flux is mostly due to small scale magnetic fields; in contrast to the more systematic large scale field of the 11 year cycle, whose helicity ...
متن کاملValidation of a synoptic solar wind model
[1] We present a validation of a three-dimensional magnetohydrodynamic model for the solar corona and the inner heliosphere. We compare the results of the model with long-term satellite data at 1 AU for a 1 year period during solar minimum and another year period of solar maximum. Overall, the model predicts rather well the magnitude of the magnetohydrodynamical variables for solar minimum cond...
متن کاملReconnaissance exploration of potential geothermal sites in Kerman province, using Curie depth calculations
In this paper an indirect method is presented to detect potential geothermal sites in Kerman province, southeast Iran. Geothermal heat flux is one of the main parameters to be investigated in geothermal exploration programs. However, few direct heat flux measurements are available for Iran. Given the proved relation between Curie depths and heat flux, magnetic data can be used to calculate the ...
متن کاملHow is open solar magnetic flux lost over the solar cycle?
[1] The Sun’s open magnetic field, magnetic flux dragged out into the heliosphere by the solar wind, varies by approximately a factor of 2 over the solar cycle. We consider the evolution of open solar flux in terms of a source and loss term. Open solar flux creation is likely to proceed at a rate dependent on the rate of photospheric flux emergence, which can be roughly parameterized by sunspot...
متن کامل